
Navigating and Updating Trees of Maps
and Arrays

Michael Kay
Saxonica

<mike@saxonica.com>

Abstract

This paper describes new features proposed for the 4.0 versions of XSLT,
XPath, and XQuery, designed to make it easier and more efficient to query
and update trees of maps and arrays, such as those typically derived by
parsing JSON.

1. Terminology
Before we start, let's introduce some terminology.
• I'll use the term QT3 to refer to the family of specifications that includes XSLT

3.0, XPath 3.1, and XQuery 3.1 (all published in 2017); and I'll use QT4 to refer
to the proposed 4.0 versions of these specifications which can be found at
https://qt4cg.org/

• I'll use the term JTree to refer to an XDM data structure comprising a tree of
maps and arrays; and I'll refer to the nodes in this tree as JNodes. This termi-
nology isn't in the spec, but I find it convenient. The "J" stands for JSON,
because these trees often originate from JSON data files, but it's important to
remember that the XDM model for maps and arrays is much more liberal than
JSON: for example, keys in a map can be any atomic type, not just strings.

• In XDM, the term "node" means a construct like an element, attribute, or text
node in a tree that represents an XML document; and "tree" means a tree of
such nodes. I won't be talking much about XML in this paper, so when I do, I
will call these things "XML trees" and "XML nodes" to avoid any confusion.

2. What problem are we trying to solve?
One of the major new features in QT3 was support for maps and arrays as new
data types. There were two main motivations for this. One was to extend the
XDM data model with data structures that provided native representation of data
found in JSON files: although we had no ambition to treat XML and JSON as
equal citizens, we recognized that real-life applications had to be able to mix and
match data from different sources. The second motivation was that users were

13

increasingly finding that representing everything (including transient working
data) as XML could be cumbersome and inefficient.

Maps and arrays proved a very successful addition to the QT3 data model,
but experience has shown that they are not yet as well supported by language
features as XML node trees, and a significant part of the QT4 programme is
aimed at filling the gaps.

At the same time, we're trying to come up with language features that exploit
the intrinsic potential of maps and arrays to deliver performance benefits. In
standards and specifications, the emphasis is on defining language features; per-
formance objectives do not feature directly, but of course the design of language
features is informed by the experience of implementors and users.

3. Previous work
Over the years I have written a number of applications that stretched the bounda-
ries of what could be achieved with XSLT, and the challenges these posed are
documented in a number of previous conference papers.

Back in 2007 [2] I experimented with using XSLT to write a query optimizer. I
reckoned that implementing optimization rewrite rules is essentially a rule-based
tree-to-tree transformation task, and in principle is therefore an ideal fit for XSLT.
But my experiments suggested that doing tree rewrites in XSLT would be about
12 times slower than doing them in Java, which made the idea infeasible. But it
set me thinking about why XSLT should be slower, and what could be done to fix
it.

One potential way of avoiding the costs of transforming XML trees in such
applications is to represent internal data using maps and arrays instead. So in
2016 [3] I explored the potential for using the QT3 facilities for transforming
JSON. Although the XSLT 3.0 spec wasn't quite finished yet, development was on
the home run and there wasn't really much scope for making further changes.
That means the analysis in that paper of how to tackle JSON tree transformations
still represents the state of the art; and it's clear that even simple transformations
can be quite difficult. The conclusion of that paper was that there were significant
limitations in the QT3 specifications for manipulating maps and arrays, and that
indeed, the most practical way to implement several apparently-simple use cases
was to convert the data to XML, transform it as XML, and then convert back to
JSON.

At XML Prague in 2018 [4] I wrote about the problem of copying XML trees.
In particular, I explored whether we could make tree copying faster by using a
tree implementation that allowed sharing of subtrees. Node identities and parent
pointers would be created on-the-fly during downwards navigation. The results
were disappointing: while one particular operation (grafting a subtree) was dra-
matically faster, everything else (including all-important navigation operations)

Navigating and Updating Trees of Maps and Arrays

14

slowed down a little, meaning there was no bottom-line benefit. But there's also
an underlying problem: given a typical XSLT recursive-descent transformation,
you can't tell when there's a particular subtree that isn't going to change, and that
can therefore benefit from a fast copy operation. That's particularly true because
even when you think a subtree is being copied unchanged, there's usually some
hidden effect on the in-scope namespaces.

When I presented this paper, someone in the audience pointed out very
politely that I had re-invented a technique well known in functional program-
ming circles: zipper data structures, attributed to Gerard Huet [1].

At Markup UK in 2018 [5] I described the project that motivated some of this
thinking: the task of writing an XSD schema validator using XSLT 3.0. This
project (which was never finished to release quality) in fact made heavy use of
maps and arrays as its internal data structures. (The use of maps here was noth-
ing to do with JSON. It was primarily to enable a single pass over input XML
trees to return multiple results: for example multiple ID values found in the tree,
or multiple validation errors). The experience on this project led to the design of
record types as found in the QT4 drafts, to enable stronger typing of maps used
to hold heterogenous data; it also led to performance improvements in the way
that maps are implemented in Saxon.

The following year, back in Prague [6], John Lumley and I described a project
to implement an XSLT compiler in XSLT. The reason we used XSLT is that we
needed a compiler that would run in the browser, and writing it in Javascript was
too horrible to contemplate; in addition it seemed logical that since compilers are
all about multiphase tree transformations, and that's what XSLT is supposed to be
good at, it ought to be a natural fit. In any case, writing a compiler in its own lan-
guage is always considered to be good for a software engineer's soul. But there
were performance issues to tackle: issues already highlighted in the 2018 paper
on efficient copy operations.

The paper contains a very detailed account of the techiques we used to get the
performance up to a level where it was only three times slower than the existing
Java compiler. Two of the significant factors were the need to represent complex
values (such as data types) as strings so that they could be held in XML attributes,
and the cost of copying XML trees, which turned out to be significantly caused by
the complexity of getting the namespaces right. Unlike some of the previous
projects described, this one did in fact complete, and resulted in the XSLT com-
piler that we use today in the SaxonJS project: though we did end up writing
some critical parts (notably the XPath parser) in Javascript.

Most recently, my paper at Balisage in 2022 [8] covered similar ground to this
paper, but the thinking has evolved since then so I feel that an update is overdue.

A theme that runs through a number of these papers is the dilemma of parent
pointers. Should trees be implemented with parent pointers or not? Closely asso-
ciated with this is the question of whether nodes should have a persistent, perma-

Navigating and Updating Trees of Maps and Arrays

15

nent identity. As far as I'm aware, all tree models for XML have node identity and
parent pointers, and all tree models for JSON don't. There's nothing intrinsic to
XML or JSON that accounts for this difference, but it has become part of the cul-
ture. Without parent pointers and node identity, it's easy to share subtrees, which
means that updates can be very efficient (you only need to copy the parts of the
tree that actually change). With parent pointers, you end up copying the whole
tree every time you want to make a small change. But without the ability to refer-
ence data higher up in the tree, some queries (especially on recursive data struc-
tures) become much harder to express. Perhaps the reason XML trees always
have parent pointers is that XML is primarily designed for text processing, and
textual data structures are intrinsically recursive.

It's worth pointing out that despite the limitations identified in this paper,
maps and arrays in their QT3 form can be extremely useful. They play a key role,
for example, in the Java-to-C# transpiler described in [7], where they are used in a
way that doesn't encounter any of these problems.

4. The QT4 project
The project to create the 4.0 specifications was announced at XML Prague in 2020
[https://archive.xmlprague.cz/2020/files/xmlprague-2020-proceedings.pdf]; it took
a while to build momentum but it is now in full swing, with well-attended Zoom
meetings taking place weekly. To date 640 issues have been tabled, and several
hundred of these have resulted in new features in the specifications. Thousands
of test cases have been written, and both Saxon and BaseX have announced exper-
imental implementations.

The project operates under the auspices of a W3C Community Group. As
such, it receives some lightweight support and endorsement from the W3C
organisation, but is largely free to do what it chooses. There is no requirement,
for example, for specifications to go through milestones such as proposed and
candidate recommendations, or for transitions in status to be approved by a for-
mal vote among the wider W3C membership.

There is a great deal of new functionality in the QT4 specifications, much of it
associated with support for maps and arrays, but in this paper I am going to con-
centrate on three aspects: recursive query, point update, and rule-based transfor-
mation.

The adjective deep here means that we are looking at maps and arrays not just
as individual data structures, but at their use in combination to represent more
complex data sets, typified by the representation of a complete JSON document. I
refer to these as JTrees.

Navigating and Updating Trees of Maps and Arrays

16

5. Overview
In the following sections I'm going to present three areas where the QT4 specifica-
tions offer new language features: deep query, point update, and rule-based
transformation.

What I desrcribe in the paper isn't necessarily identical with the current snap-
shot of the published specifications. In some cases there are proposals to change
the current drafts that the community group is still working on. In some cases
there is a broad consensus on the way forward, in other cases proposals have
been put forward but not yet discussed, in other areas there have been discus-
sions but alternatives are still on the table. So what I present here is a mix of what
the current drafts actually say, and what I hope they will say in due course. It's
very much a personal perspective. And with the best will in the world, the final
specifications will have moved on from the current proposals. The process of
agreeing language specifications may be slow, but it is fairly good and distin-
guishing what works and what doesn't, and at finding incremental improvements
where they are needed.

6. Recursive Query
Let's look first at the question of recursive query.

The QT3 specifications offer the lookup operator ? as a rough equivalent of
the path operator / used for navigation in XML trees. It can be used both for
selection by key within a map, and for selection by subscript within an array.
Here is a simple example. Consider the example document used in the JSONPath
specification, representing four books and a red bicycle:

{
 "store": {
 "book": [
 {
 "category": "reference",
 "author": "Nigel Rees",
 "title": "Sayings of the Century",
 "price": 8.95
 },
 {
 "category": "fiction",
 "author": "Evelyn Waugh",
 "title": "Sword of Honour",
 "price": 12.99
 },
 {
 "category": "fiction",
 "author": "Herman Melville",

Navigating and Updating Trees of Maps and Arrays

17

 "title": "Moby Dick",
 "isbn": "0-553-21311-3",
 "price": 8.99
 },
 {
 "category": "fiction",
 "author": "J. R. R. Tolkien",
 "title": "The Lord of the Rings",
 "isbn": "0-395-19395-8",
 "price": 22.99
 }
],
 "bicycle": {
 "color": "red",
 "price": 399
 }
 }
}

It is possible to find the average price of books by Tolkien with the query:
$data ?store ?book ?[?author = "J. R. R. Tolkien"] ?price => avg()

Most of this is QT3 syntax, but there's one new QT4 construct here, namely the
array filter expression ARRAY?[PREDICATE]. The takes an array, and filters it to
retain the array members that match the predicate, in exactly the same way that
XPath filter expressions have always been used to filter sequences.

To achieve the same effect in QT3, it is necessary to convert the array to a
sequence by writing book ? * [?author = "J. R. R. Tolkien"]. This works
fine in this case where all the members of the array are single items (in this case,
single maps), but is not useful in the general case where array members are arbi-
trary sequences: in such cases the QT3 solution is the higher-order array:filter
function.

The limitations of the lookup operator start to become apparent when the data
becomes more complex.

Firstly, QT3 offers no equivalent to the // operator used for searching the
descendant axis of XML trees. The // operator is useful for a number of reasons:
• It's a handy shorthand: it avoids having to spell out long and complex paths

in detail.
• It's useful where the same structure can occur at different places in the tree,

for example when searching the above structure for a price, which might be
the price of a book or of a bicycle. (The sample data here is a joke, but unfortu-
nately that's often also true of data found in the real world.)

• It's invaluable when handling recursive data such as an organisation chart,
where the same structures occur at different levels.

Navigating and Updating Trees of Maps and Arrays

18

Secondly, this path-based syntax can't be used for join queries. That's equally true
of XML-based path expressions using /, and the solution is the same: FLWOR
expressions. Let's suppose that we want to know (somewhat surreally) how many
books there are in the store that cost less than a bicycle. We can write:

let $bicycle-cost := ?store ?bicycle ?price
return count(?store ?book ?[?price lt $bicycle-cost])

This still leaves another usability problem: all selections have to be downwards.
There's no equivalent to the sibling, parent, or ancestor axes used when navigat-
ing XML. Now, it's arguable that these axes are most useful when searching text,
and are less needed for JSON because no sane person would use JSON for repre-
senting text. But even with structured data, they can be very handy, especially
when the data is recursive. A classic query is to find everyone who earns more
than their manager: //person[salary > ../salary]. Similarly, the sibling axes
are useful when data is ordered.

The map:find() function was a late addition to the QT3 specifications which
attempted to provide an equivalent to the // operator, but it has proved almost
entirely useless. The reason is that it only returns the values, it tells you nothing
about the context in which they were found. You can find all the values of first-
name in your entire dataset, but what can you do with the knowledge that the
names that appear are John, Jane, and Mary? Finding all the values of employee
(which are likely to be maps) is a bit more promising, but without the ability to
navigate up the tree to discover context (like the department or location of each
employee) the data is still of very limited value.

So let's look at how lookup paths have been improved in the QT4 specifica-
tions. There are a number of changes, some quite minor, some more signficant.
(In addition, I should emphasize, some of these are a solid part of the QT4 drafts,
while others are proposals that are still being polished and refined.)

The most obvious change is that we've introduced the "deep lookup" variant,
A ?? B. Like //, this recurses down through a JTree of maps and arrays to find its
target. And like // (and like map:find), it returns a flattened sequence of items.

But there's a fundamental difference. When you return a flattened sequence of
XML nodes, those nodes are located at a position within a structure, and you can
get extra information about them: most commonly, you are selecting a sequence
of elements, and from the elements you can get information about their attributes,
their content, their siblings, their parents.

With ??, all you get back are values. If you do ??name, you get back a set of
names. There's no context; no way of finding out any other information beyond
the actual strings. If the values you get back are themselves maps, you can do a
little bit better, you can drill down into the content of those maps. Remember, a
map (unlike an XML element) doesn't even have a name. You might find it via a
name (consider store and bicycle in the example above), but the name isn't part

Navigating and Updating Trees of Maps and Arrays

19

of the map, it's not available as part of the information returned by the ?? opera-
tor.

The fact that maps and arrays (unlike XML elements) have no name, is rather
fundamental. The expression //event/* selects elements that have names, and
the names often serve to distinguish one event from another. The names are a
property of the element. In JSON, names perform a subtly different role: they
don't identify what kind of value you are dealing with, they identify its role in
relation to a parent object, and an expression such as ??event?* selects values
without identifying what kind of object they are.

In JSON structures the best way to identify classes of value is often not by
name, but by structure. If we want to process locations, we probably can't search
for objects named location, we have to search for objects that have longitude
and latitude properties. For that reason we've added type-based selectors to
lookup expressions, so you can do ??type(record(longitude, latitude)) to
find all the maps (objects) having longitude and latitude properties.

The fact that the lookup operators flatten their results brings additional prob-
lems. Suppose you have data like this:

{
 "readings": [
 { "Week":1, "Mo": (12, 16, 18), "Tu": (), "We": ...}
 { "Week":2, "Mo": (4, 8), "Tu": (4, 5), "We": ... }
]
}

Now the result of ??Mo is (12, 16, 18, 4, 8), and the result of ??Tu is (4,5)
which is pretty meaningless - all the internal structure has been lost. We just have
a set of numbers, and no idea where they came from.

So the next change we have made is to introduce modifiers, which enable you
to return something other than the flattened result. For example, the result of ??
entry::Mo is a sequence of key-value pairs:

{"key": "Mo", "value": (12, 16, 18)},
{"key": "Mo", "value": (4, 8)}

This retains a lot more structure - it becomes possible to ask questions like "On
which Monday was the average reading at its highest?".

The syntax allows four modifiers: entry:: returns the key-value pair as in the
above example, key:: returns the key (when selecting into an array, this is the
numeric index), value:: returns the value part, with each value wrapped as an
array so that different values are kept separate, and content:: returns the flat-
tened sequence. For compatibility with QT3, ?x is short for ?content::x.

The biggest change, however, is that the results returned by the ? and ?? oper-
ators are now labeled with their provenance. This means that you can now do
queries like ??entry::*[?value?salary > ?parent()?salary].

Navigating and Updating Trees of Maps and Arrays

20

How does that work?
The maps and arrays in a JTree don't have parent pointers, and we're not

changing that. Parent pointers prevent a subtree being shared by two different
trees, which is the major reason why copying subtrees in the XML model is so
expensive. Instead, though, when we search for data by downwards navigation,
we can remember how we reached the values that we found, and we can make
this information available. This is essentially the idea behind zipper structures [1].

The idea of a zipper structure as that as you navigate into a structure, you
keep a trail of where you have visited, so that you can back out. This effectively
turns a one-way list into a two-way list, or a tree without parent pointers into one
that allows upwards navigation; and it does so without making the structure
mutable, or losing the properties that allow functional modifications (modifica-
tions that create a new list or tree without destroying the old one).

The solution to this in QT4 is taken straight from the zipper model. The result
of a deep search (which can now be done using the deep lookup operator:
$data??person) is a set of labeled values. The expression returns the required
JNodes, but these carry an extra label identifying where they were found. The
label is not part of the persistent data, it is additional information added by the
search process, so the same value found by two different routes can carry differ-
ent labels. We can immediately see how this allows common subtrees to be
shared without the need for physical copying.

What information is available in the labels? We can describe this at two levels:
an internal level that describes the data that is retained, and an external level that
describes how this is exposed to user applications. At the internal level, there are
two degrees of granularity associated with a downwards selection: selecting an
entry with a given key (which in the case of an array means the array member at
a given index), and selecting a specific item within the value part of the entry.

So, when selecting an entry (key-value pair) the information retained in the
label consists of two things: the containing JNode (a map or array), and the key/
index by which the entry was selected within that JNode. Of course the contain-
ing JNode will also have a label identifying its own provenance, so one can follow
a chain of labels all the way to the root JNode of the query.

At the next level of granularity, when we select an individual item within a
value, there is an additional piece of information: the integer position of the item
within the value.

Looking back at the example where the query ??Mo returned the sequence
(12, 16, 18, 4, 8), we can now see that these items carry hidden labels as fol-
lows:
• 12: container: { "Week":1, "Mo": (12, 16, 18), "Tu": (),

"We": ...}, key: "Mo", position: 1

Navigating and Updating Trees of Maps and Arrays

21

• 16: container: { "Week":1, "Mo": (12, 16, 18), "Tu": (),
"We": ...}, key: "Mo", position: 2

• 18: container: { "Week":1, "Mo": (12, 16, 18), "Tu": (),
"We": ...}, key: "Mo", position: 3

• 4: container: { "Week":2, "Mo": (4, 8), "Tu": (), "We": ...}, key:
"Mo", position: 1

• 8: container: { "Week":2, "Mo": (4, 8), "Tu": (), "We": ...}, key:
"Mo", position: 2

There are two ways this data is currently exposed (this may change):

• Firstly, the function selection-path can be applied to any item. If the item
has a label indicating how it was reached, the function returns a sequence of
records, one for each step in the selection (in innermost-to-outermost order).
The first record in the result, for the value 12 in the example above, is the
record {"key": "Mo", "position": 1, "container": { "Week":1, "Mo":
(12, 16, 18), "Tu": (), "We": ...}} The second and subsequent records
represent the selection path of the container, defined recursively. So if the
selection-path function is called with the labeled value 12 as the argument,
then (for example), selection-path(12)?key will return the sequence ("Mo",
1, "readings"); reversing this sequence gives the sequence of keys needed to
select the item from the root.

• Secondly, when the modifier entry:: is used, the returned entries include
functions that make the same information available, but in more digestible
form. The proposed functions include ancestors(), which returns all the nes-
ted JNodes, innermost first, parent() which returns the same as ancestors()
[1], root() which returns ancestors()[last()], and ancestor-keys()
which returns the sequence of key values used to select the ancestors at each
level.

7. Point Update
In my 2016 paper I presented two use cases for transformation of JSON trees, and
I have continued to use these to test the adequacy of proposed new language fea-
tures.

The first use case is what I call a "point update": increase the price of all products
tagged with the keyword "ice" by 10%. I call it a "point update" because we identify
the places in the tree structure than need to change, and then say how they
should change. That requirement is very easily stated in English, and it's not very
difficult to devise XQuery or XSLT syntax to express the requirement, for exam-
ple in XQuery

Navigating and Updating Trees of Maps and Arrays

22

update $root {
 replace ??product[?tag = "ice"]?price with . * 1.1
}

or in XSLT
<xsl:update root="$root"
 replace="??product[?tag = 'ice']?price"
 with=". * 1.1"/>

In both cases the idea is that the instruction returns a new version of the tree roo-
ted at $root (leaving the original intact) which differs from the original in that the
selected prices have changed.

This is sometimes called in-situ update, but that's misleading, because existing
data is not changed.

This is similar in concept to the kind of updating expressions available in the
XQuery Update Facility (XQUF). However, it has far less complexity. XQUF
essentially has two modes of operation:
• Pending Update Lists, where the updates are deferred until the query has fin-
ished execution, and the query itself has no opportunity to read the updated
data;

• Copy-Modify operations, where the updates are performed on a copy of the
data, leaving the original unchanged. But with XML (because of XML node
identity and parent pointers) copying an XML tree typically takes time and
memory proportional to the size of the tree.

The current proposed specification for this feature describes the semantics in
terms of a recursive-descent rule based transformation, rather as if it were imple-
mented in XSLT. The only complication is how to tell when you are processing a
value selected by the expression ??product[?tag = 'ice']?price. One way to
do this would be to restrict the syntax of this expression to a pattern-like syntax
so you can test each value in the tree when you get to it. But if you turn to the
semantics of patterns in XSLT, the definition depends on being able to navigate
upwards in the tree. Instead, the approach we have adopted is that you can use
any selection expression you like, and the values you select are tagged with a
temporary label, so that you can identify them during the recursive descent tra-
versal, and process them accordingly.

The QT3 data model says:

This version of the XPath Data Model does not specify whether or not maps have
any identity other than their values. No operations currently defined on maps
depend on the notion of map identity. Other specifications, for example,
the XQuery Update Facility, may make identity of maps explicit.

That was a committee compromise. The WG knew that maintenance of identity is
expensive in many ways: not only does create the need to make physical copies of

Navigating and Updating Trees of Maps and Arrays

23

data that is otherwise unchanged during a transformation, it also complicates the
semantics of the language because functions are no longer purely functional (if a
function creates new node each time it is called, then optimizations such as loop
lifting become invalid). But the WG at the time couldn't see how update opera-
tions could be defined without some notion of object identity.

The solution adopted in QT4 is to have a notion of identity, but one that is
transient and exists only while an updating operation is in progress. Conceptu-
ally, the update starts by making a copy of the input in which all JNodes have
identity; it then modifies this copy in-situ, and then strips off the identifiers.

The great thing is, however, that this complexity exists only in the formal
semantics of the operation. As far as users are concerned, its fairly intuitive
what's meant by

update $root {
 replace ??product[?tag = "ice"]?price with . * 1.1
}

Performing this operation in QT3, whether in XQuery or XSLT, is surprisingly dif-
ficult, as I showed in my 2016 paper. I ended up converting the data to an XML
tree, updating the XML tree, and then converting back to maps and arrays.

The implementation of this update expression in Saxon is very different from
the formal semantics1. Rather than doing a top-down traversal of the whole tree
structure (which would take time proportional to the size of the tree), Saxon dives
straight in to the selected nodes and makes the changes locally. Internally, you
have to find the affected nodes in the tree, make local copies of those nodes with
modified properties, and then you have to work your way back up the tree mak-
ing copies of the affected parent nodes so they point to the modified children
rather than to the originals. This needs to take into account that when creating a
modified parent node, you might need to incorporate multiple modified child
nodes. Finally, when you've worked your way back up to creating a modified
copy of the original root node, you can return that as the result of the expression.

So for this use case, we don't need to expose the zipper model to the user; but
it needs to be there in the background; the route to each modified node in the tree
needs to be retained so that the ancestor nodes can be reconstructed.

The second use case in my 2016 paper involved a hierachic inversion. Starting
with a JSON dataset representing courses and the students attending each course,
the requirement is to invert this to create a dataset organised first by student, list-
ing the courses taken by each student. This is more of a tree transformation task
than a point update task, and I tackle it in the next section.

1Saxon has had an implementation of something very similar for some years: see https://www.saxon-
ica.com/documentation12/index.html#!extensions/instructions/deep-update.

Navigating and Updating Trees of Maps and Arrays

24

8. Rule-based Transformation
For earlier thoughts on this subject, see the section "Template-based Transforma-
tion" in my Balisage 2022 paper: [8].

Transformation by applying template rules during the course of a recursive
tree walk is the characteristic processing model of the XSLT language, and there
is no intrinsic reason why it shouldn't work just as well with JTrees as with XML
trees. The main challenge is that it's tricky to define match patterns when the
things we are matching don't have distinguishing names.

There are three parts to the problem: how to break arrays and maps down into
components that can conveniently be matched by template rules; how to define
the corresponding match patterns; and how to construct new arrays and maps
within the body of the corresponding template rules.

There are proposals for how to do this in the current XSLT 4.0 draft specifica-
tion, and further ideas in my 2022 Balisage paper, but the more recent work on
deep query suggests enhancements to these features that are not yet fully worked
out. So what follows is my current proposal for a revision to the draft specifica-
tion.

A good way to approach this is to start by thinking about what the standard
default template rules should do. The desired effect is that we can define a mode
of processing (say with <xsl:mode on-no-match="traversal"/>) which has the
effect that if there are no user-written template rules in the mode, the effect is an
identity transformation. But we want to design it so that it becomes easy to inject
user-written template rules to customize the processing of particular constructs.

So let's start by defining a set of built-in rules for this new processing mode.

8.1. Built-In Rules
For arrays, we want the default rule to process all the members of the array. The
question is, how should the array members be represented? Remember that an
array member is in general a sequence rather than a single item. Although QT4
has generalised the concept of the context item so that it is now a context value
(which can be any sequence), for the time being, XSLT templates are still applied
to individual items, so we need to package up each array member as a single
item.

In my Balisage 2022 paper I proposed representing an array member as a "par-
cel", which was essentially a sequence wrapped up as a single item. That raises
the question, should parcels be a new kind of item in the data model, or should
we reuse some existing kind of item (candidates being an array, a zero-arity func-
tion, or a single-entry map). The problem with introducing a new kind of item is
that extensions to the type system are expensive and disruptive. The problem
with reusing existing kinds of item is that it's harder to define match patterns that
match them nicely.

Navigating and Updating Trees of Maps and Arrays

25

My current proposal is to represent array members as records (that is maps)
with (at least) the following fields:
• array-member: a boolean, always true. This field exists purely for convenience

in writing match patterns: a template rule can use match="record(array-
member, *)" with a high level of confidence that the rule won't accidentally
match something else.

• member: the actual value of the array member, an arbitrary sequence.
• index: the 1-based index position of the array member within the array (just

in case different processing is applied to different members based on their
position).

The template rule for an array member is required to return a new array member;
this must be represented by a record containing a member field, but the other
fields are optional and ignored.

So the default template rule for arrays breaks up the arrays into its members,
applies templates to each of them individually, and then reassembles the result:

<xsl:template match="array(*)">
 <xsl:array use="?member">
 <xsl:apply-templates select="
 for member $m at $index in .
 return {'array-member':true(), 'member':$m, 'index':$index}"
 mode="#current"/>
 </xsl:array>
</xsl:template>

A few observations on this code:
• match="array(*)" is one of a new class of match patterns that match items by

type. In XSLT 3.0 this was written, clumsily, as match=".[. instance of
array(*)].

• xsl:array is a new instruction to construct an array. The contained sequence
constructor delivers one item for each member of the new array. If a use attrib-
ute is present, then it is evaluated once for each of these items, to convert the
supplied item to the required array member. In this case we expect the
applied template rule to return a value of type record(member), and the use
expression extracts the contents of the member field to form the array member.

• for member is a new variant of the for expression (or XQuery FLWOR expres-
sion) that binds the variable $m to each member of the array in turn, as well as
binding $index to its 1-based index position.

• The expression {'x':1, 'y':2} is a map constructor, equivalent to the XPath
3.1 expression map{'x':1, 'y':2}. The map keyword is no longer needed. (It
was required in XPath 3.1 because some members of the design team wanted

Navigating and Updating Trees of Maps and Arrays

26

to reserve "bare brace" syntax with no leading keyword for a different pur-
pose.)

The default processing rule for members of an array is to apply templates to each
item in the value of the member individually: recall that in the general case, an
array member includes zero or more items. The processing returns a new array
member that replaces the original:

<xsl:template match="record(array-member as xs:boolean,
 member as item()*,
 index as xs:integer,
 *)">
 <xsl:apply-templates select="
 for $item at $pos in ?member
 return {'array-member-item': true(),
 'member': $m,
 'index': $index,
 'item': $item,
 'position': $pos}"
 mode="#current"/>
</xsl:template>

Observations:
• It's probably unlikely that many users would want to override processing at

this level; but it provides the option for completeness. A template rule at this
level has access to the entire array member and its index position within the
array, and also to an individual item within the array member and its position
within the array member.

• A template rule at this level is expected to return one or more items, which
will substitute for the original item in the new array member.

The default processing for individual items is then to apply templates to the item:
<xsl:template match="record(array-member-item as xs:boolean,
 member as item()*,
 index as xs:integer,
 item as item(),
 position as xs:integer,
 *)">
 <xsl:apply-templates select="?item" mode="#current"/>
</xsl:template>

And the default processing for items is to move the item to the output
unchanged:

<xsl:template match="item()">
 <xsl:sequence select="."/>
</xsl:template>

Navigating and Updating Trees of Maps and Arrays

27

Note that this just creates a reference to the existing item, it doesn't require mak-
ing a deep copy of the item. This makes a big difference if an array or map con-
tains XML nodes. The transformed JTree will contain the original XML nodes,
rather than copies of these nodes. If copying or transformation of the XML nodes
is required, this can be achieved by overriding the template rule for the individ-
ual XML nodes.

Maps are handled in a similar way to arrays. The top-level default template
rule for maps splits it into its constituent entries (key-value pairs), marking each
one with a map:entry field for ease of matching:

<xsl:template match="map(*)">
 <xsl:map on-duplicates="op(',')">
 <xsl:apply-templates select="
 for entry {$key, $value} in .
 return {'map-entry':true(), 'key': $key, 'value':$m}"
 mode="#current"/>
 </xsl:array>
</xsl:template>

Observations:
• match="map(*)" is another new type-based match pattern, matching any

instance of the specified type.
• The xsl:map instruction exists in XSLT 3.0, but the on-duplicates attribute is

new: it controls what happens when the sequence constructor delivers more
than one map entry with the same key. The value is a function that in general
takes two values having the same key and returns a single value; the expres-
sion op(',') returns an arity-2 function equivalent to the dyadic , (comma)
operator which forms the sequence-concatenation of two values.

• The for entry {$key, $value} construct is a proposed extension to the for
or FLWOR expression syntax for iterating over the entries in a map; it has been
mooted as proposed XPath 4.0 syntax, but is not yet in the draft specification.

The default template rule for processing map entries looks like this:
<xsl:template match="record(map-entry as xs:boolean,
 key as xs:anyAtomicType,
 value as item()*,
 *)">
 <xsl:map-entry key="?key">
 <xsl:apply-templates select="
 for $item at $pos in ?value
 return {'map-entry-item': true(),
 'key': ?key
 'value': ?value,
 'item': $item,
 'position': $pos}"

Navigating and Updating Trees of Maps and Arrays

28

 mode="#current"/>
 </xsl:map-entry>
</xsl:template>

And again, the default processing at this level is to apply templates to the indi-
vidual items directly:

<xsl:template match="record(map-entry-item as xs:boolean,
 key as xs:anyAtomicType,
 value as item()*,
 item as item(),
 position as xs:integer,
 *)">
 <xsl:apply-templates select="?item" mode="#current"/>
</xsl:template>

Once again, it is unlikely that user applications would want to override the pro-
cessing at this level, but the option is there for completeness.

Not stated in the details above is that each of these built-in templates passes
any template parameters through unchanged.

In addition, the code for the built-in templates fails to show explicitly that
each item passed to any of these template rules is labeled with provenance infor-
mation indicating its position within the JTree being navigated. The existence of
this label means that the function selection-path can be applied to the item to
obtain information about the route used to select the item. The result of the func-
tion is a sequence of records, from innermost to outermost order, each containing
some or all of the following fields:
• container: the map or array containing the value.
• key: the key (for an entry in a map) or index (for a member in an array) of the

value within its container.
• position: the index position of an individual item within an array member or

map value, when that value is a sequence of items.
Note that while built-in template rules maintain this information and pass it on to
the template rules they call, user-written template rules may or may not do so,
depending on how they are written. If they use the lookup operators ? and ?? to
make downwards selections, then the provenance of the values they select is
maintained.

8.2. Use Cases
The most common use case is to override processing at the level of an individual
entry in a map. Template rules at this level are expected to return zero or more
map entries, in the format delivered by the xsl:map-entry instruction. Here are
some examples of template rules that do this:

Navigating and Updating Trees of Maps and Arrays

29

<xsl:template match="record(map-entry, *)[?key='note']"/>

 <xsl:template match="record(map-entry, *)[?key='mark']">
 <xsl:map:entry key="'mark'" select="upper-case(?value)"/>
 </xsl:template>

 <xsl:template match="record(map-entry, *)[?key='price']">
 <xsl:next-match/>
 <xsl:map:entry key="'currency'" select="'USD'"/>
 </xsl:template>

The first of these template rules (with [?key='note']) returns no output, so the
matching map entries are deleted.

The second (with [?key='mark']) returns a map entry having the same key,
but with the value converted to upper case.

The third (with [?key='price']) performs the built-in processing for map
entries (by invoking xsl:next-match) and then adds a new map entry, setting
currency to "USD".

The transformation presented earlier (increase the price of all products tagged
with the keyword "ice" by 10%) can be achieved in a number of ways. One way is
to match selected product entries and then to modify the price directly using
map:put:

<xsl:template match="record(map-entry, *)
 [?key='product']
 [?value?tag = 'ice']">
 <xsl:map-entry key="'product'">
 <xsl:sequence select="map:put(?value, 'price', ?value?price *
1.1)"/>
 </xsl:map-entry>
</xsl:template>

8.3. Grouping
While some transformations benefit from the rule-based recursive-descent para-
digm, others involve wholesale reconstruction of a new document. Grouping and
hierarchic inversion tasks often fall into this category.

Consider this use case from my 2016 paper, involving hierarchic inversion.
The aim is to start with a JSON file containing a list of faculties and courses and
the students enrolled on each course, and to invert this to produce a file contain-
ing a list of students, with the courses that each one is taking. Specifically, this is
the input:

[{
 "faculty": "humanities",
 "courses": [

Navigating and Updating Trees of Maps and Arrays

30

 {
 "course": "English",
 "students": [
 {
 "first": "Mary",
 "last": "Smith",
 "email": "mary_smith@gmail.com"
 },
 {
 "first": "Ann",
 "last": "Jones",
 "email": "ann_jones@gmail.com"
 }
]
 },
 {
 "course": "History",
 "students": [
 {
 "first": "Ann",
 "last": "Jones",
 "email": "ann_jones@gmail.com"
 },
 {
 "first": "John",
 "last": "Taylor",
 "email": "john_taylor@gmail.com"
 }
]
 }
]
},
{
 "faculty": "science",
 "courses": [
 {
 "course": "Physics",
 "students": [
 {
 "first": "Anil",
 "last": "Singh",
 "email": "anil_singh@gmail.com"
 },
 {
 "first": "Amisha",
 "last": "Patel",

Navigating and Updating Trees of Maps and Arrays

31

 "email": "amisha_patel@gmail.com"
 }
]
 },
 {
 "course": "Chemistry",
 "students": [
 {
 "first": "John",
 "last": "Taylor",
 "email": "john_taylor@gmail.com"
 },
 {
 "first": "Anil",
 "last": "Singh",
 "email": "anil_singh@gmail.com"
 }
]
 }
]
}]

and this is the desired output:

[
 {
 "email": "ann_jones@gmail.com",
 "courses": [
 "English",
 "History"
]
 },
 {
 "email": "amisha_patel@gmail.com",
 "courses": ["Physics"]
 },
 {
 "email": "anil_singh@gmail.com",
 "courses": [
 "Physics",
 "Chemistry"
]
 },
 {
 "email": "mary_smith@gmail.com",
 "courses": ["English"]
 },

Navigating and Updating Trees of Maps and Arrays

32

 {
 "email": "john_taylor@gmail.com",
 "courses": [
 "History",
 "Chemistry"
]
 }
]

In XSLT terms, this is clearly a grouping query. We want to select the students
from the input file, group them by email address, and for each email address,
output the courses attended by that student.

Here's the solution. The critical dependency is the call on ancestors which
enables us to trace back to the JNodes visited during the deep lookup operation
json-doc('courses.json')??email.

<xsl:transform xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="4.0">

 <xsl:template name="xsl:initial-template">
 <xsl:array>
 <xsl:for-each-group select="json-doc('courses.json')??
entry::email" group-by="?value">
 <xsl:sort select="current-grouping-key()"/>
 <xsl:map>
 <xsl:map-entry key="'email'"
 select="current-grouping-key()"/>
 <xsl:map-entry key="'courses'">
 <xsl:array select="current-group() ? ancestors() ?
course"/>
 </xsl:map-entry>
 </xsl:map>
 </xsl:for-each-group>
 </xsl:array>
 </xsl:template>

</xsl:transform>

Notes on this solution:
• entry::email selects a sequence of map entries or key-value pairs in the form

record(key, value); the record also includes an ancestors field which is a
function providing access to the containing maps and arrays.

The grouping key ?value is the actual email address.
• The expression current-group() ? ancestors() ? course doesn't currently

work. The LHS of a dynamic function call must be a single function, but
current-group() ? ancestors is a sequence of functions. I've raised an issue

Navigating and Updating Trees of Maps and Arrays

33

to fix that. To make it work without this fix, it needs to be written as
(current-group() ! ?ancestors()) ? course

We can also solve this use case using XQuery, taking advantage of the group by
clause in a FLWOR expression. The following should work:

array {
 for $email in json-doc('courses.json'))??entry::email
 order by $email?value
 group by $email?value
 return {
 'email': $email?value,
 'courses': array { for $e in $email
 return $e?ancestors()?course }
 }
}

In the interests of full disclosure, I am using a development version of Saxon that
implements a slightly different version of the syntax from the snapshot presented
in this paper (we are dealing here with rapidly evolving specifications and pro-
posals, and the implementation is often either ahead of the spec or a little behind
it). With this version of Saxon, the XSLT code that actually works is:

<xsl:transform xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="4.0">

 <xsl:template name="xsl:initial-template">
 <xsl:array>
 <xsl:for-each-group select="pin(json-doc('courses.json'))??
email" group-by=".">
 <xsl:sort select="current-grouping-key()"/>
 <xsl:map>
 <xsl:map-entry key="'email'"
 select="current-grouping-key()"/>
 <xsl:map-entry key="'courses'">
 <xsl:variable name="labels" select="current-group() =!
> label()"/>
 <xsl:variable name="ancestors" select="($labels ! ?
ancestors())[. instance of record(course, students)]"/>
 <xsl:array select="$ancestors?course"/>
 </xsl:map-entry>
 </xsl:map>
 </xsl:for-each-group>
 </xsl:array>
 </xsl:template>

</xsl:transform>

Navigating and Updating Trees of Maps and Arrays

34

And the working XQuery code is:

array {
 for $email in pin(json-doc('courses.json'))??email
 order by $email
 group by $email
 return {
 'email': $email,
 'courses': array { for $e in $email
 return label($e)?ancestors()[. instance of
map(*)]?course }
 }
}

9. Conclusions
A major theme running through the proposals for XSLT 4.0 and XQuery 4.0 is
improved support for manipulation of maps and arrays, both to make the lan-
guages more suitable for processing JSON, and also to improve the usability and
performance of maps and arrays when used for internal working data within an
XML transformation.

My 2016 paper at XML Prague demonstrated the shortcomings of the 3.0/3.1
specifications for achieving some simple use cases in this regard; with that ver-
sion of the language, the best solution for JSON processing has often been to con-
vert the JSON to XML, transform the XML, and then convert back to JSON.

This paper describes how these challenges have been addressed in the propos-
als for XSLT 4.0 and XQuery 4.0. It describes new language features in three main
areas:

• Recursive Query

• Point Update

• Rule-based Transformation

and revisits the 2016 use cases to show how the new features work together to
solve the problem.

References
[1] Gerard Huet. The Zipper. Journal of Functional Programming. 7 (5): 549–554

doi:10.1017/s0956796897002864. S2CID 31179878.
[2] Michael Kay. Writing an XSLT Optimizer in XSLT. Extreme Markup Languages,

Montreal, 2007. Available at http://www.saxonica.com/papers/
Extreme2007/EML2007Kay01.html.

Navigating and Updating Trees of Maps and Arrays

35

[3] Michael Kay. Transforming JSON using XSLT 3.0. XML Prague 2016. Available
at https://archive.xmlprague.cz/2016/files/xmlprague-2016-
proceedings.pdf and at https://www.saxonica.com/papers/
xmlprague-2016mhk.pdf.

[4] Michael Kay. XML Tree Models for Efficient Copy Operations. XML Prague 2018.
Available at https://archive.xmlprague.cz/2018/files/xmlprague-2018-
proceedings.pdf and at https://www.saxonica.com/papers/
xmlprague-2018mhk.pdf.

[5] Michael Kay. An XSD 1.1 Schema Validator Written in XSLT 3.0. Markup UK
2018. Available at https://markupuk.org/2018/Markup-UK-2018-
proceedings.pdf and at https://www.saxonica.com/papers/
markupuk-2018mhk.pdf.

[6] Michael Kay and John Lumley. An XSLT compiler written in XSLT: can it
perform?. XML Prague 2019. Available at https://archive.xmlprague.cz/
2019/files/xmlprague-2019-proceedings.pdf and at https://
www.saxonica.com/papers/xmlprague-2019mhk.pdf.

[7] Michael Kay. <transpile from="Java" to="C#" via="XML" with="XSLT"/>.
Markup UK 2021. Available at https://markupuk.org/2018/Markup-
UK-2021-proceedings.pdf and at https://www.saxonica.com/papers/
markupuk-2021mhk.pdf.

[8] Michael Kay. XSLT Extensions for JSON Processing. Balisage 2022. Available at
https://www.balisage.net/Proceedings/vol27/html/Kay01/
BalisageVol27-Kay01.html .

Navigating and Updating Trees of Maps and Arrays

36

