
DISTRIBUTING XSLT PROCESSINGDISTRIBUTING XSLT PROCESSING
BETWEEN CLIENT AND SERVERBETWEEN CLIENT AND SERVER

XML London, 10 June 2017

O'Neil Delpratt
oneil@saxonica.com

Debbie Lockett
debbie@saxonica.com

SETTING THE SCENESETTING THE SCENE

XSLT PROCESSING: SERVER V CLIENTXSLT PROCESSING: SERVER V CLIENT
SERVER SIDE XSLTSERVER SIDE XSLT

CLIENT SIDE XSLTCLIENT SIDE XSLT
Native support, not so much...

Browsers only support XSLT 1.0
Many mobile browsers not even that

However...

SAXON-JSSAXON-JS
XSLT 3.0 runtime processor, in pure JavaScript;
runs in browser's JavaScript engine
Executes compiled stylesheet export files (SEFs)
Distributed processing becomes a viable option

Warning: To disable advertisements look away now. Other XSLT processors are available.

INTERACTIVE XSLTINTERACTIVE XSLT
Saxon-JS not only provides XSLT 3.0 in the browser,
but also allows interactive web applications to be

written directly in XSLT, using interactive XSLT.

Extension instructions, functions, modes
Event handling templates
Dynamic generation of HTML page content
First introduced with Saxon-CE a few years ago
Further developments with Saxon-JS

WHY MOVE PROCESSING CLIENT SIDE?WHY MOVE PROCESSING CLIENT SIDE?
Improve speed
Simplify application architecture
Remove translations
between different third-party tools and languages

Minimise possible failures and incompatibilities
(e.g. encoding issues)

XML end-to-end
Retain some server side processing
to maintain security of sensitive data and keep data centralised

EXAMPLE WEB APPLICATIONEXAMPLE WEB APPLICATION
Task: Redesign in-house License Tool webapp
making use of client side interactive XSLT 3.0

Generates licenses for Saxon commercial products
XForms in the front end
Servlex server side

DEMODEMO

INTERNAL ARCHITECTUREINTERNAL ARCHITECTURE
Flow diagram for redesigned License Tool

Shows that much of the processing has been moved
client side: parsing text input, converting to XML
format, validation, generating XForms form

NEW DEVELOPMENTSNEW DEVELOPMENTS
We'll now focus on two major areas of technical

development, required for the License Tool redesign.

1. XForms implementation
2. HTTP

XFORMSXFORMS

XFORMS IMPLEMENTATION USINGXFORMS IMPLEMENTATION USING
INTERACTIVE XSLT 3.0INTERACTIVE XSLT 3.0

(PROTOTYPE)(PROTOTYPE)

Replaces previously used XSLTForms:

Limiting XSLT 1.0 implementation in the browser
Decoding issues in HTTP request

XFORMS IMPLEMENTATION USINGXFORMS IMPLEMENTATION USING
INTERACTIVE XSLT 3.0INTERACTIVE XSLT 3.0

INTERNALSINTERNALS

Implemented in XSLT 3.0, runs in browser using
Saxon-JS
XForms model, instance and form controls written in
XML document
Handle events using interactive XSLT 3.0
Instance data held on page.
XPath 3.1: json-to-xml()

BENEFITSBENEFITS
Maintains XML to XML processing
Better support on mobile devices
XSLT 3.0
Better integration into the whole license tool

HTTPHTTP

HTTP REQUESTS USINGHTTP REQUESTS USING
INTERACTIVE XSLTINTERACTIVE XSLT

New mechanism - developed since writing the paper
Uses <ixsl:schedule-action>
New attribute http-request will be available
with Saxon 9.8 and Saxon-JS 1.0.1 (coming soon)

Alternative: call custom global JavaScript function to make HTTP request

IXSL:SCHEDULE-ACTIONIXSL:SCHEDULE-ACTION
Instruction to make an asynchronous call to a

named template.

wait - after waiting a specified time
document - after fetching a document
using an internal, asynchronous "GET" HTTP request

http-request - after receiving a response from a
specified HTTP request

EXAMPLEEXAMPLE
<ixsl:schedule-action http-request="$HTTPrequest">
 <xsl:call-template name="HTTPsubmit"/>
</ixsl:schedule-action>

Specify HTTP request using an XPath 3.1 map
(More convenient than using EXPath HTTP Client Module http:request element)

Called template handles the response - which is also
returned as an XPath 3.1 map

CONCLUSIONCONCLUSION
Using interactive XSLT 3.0:
- Redesign our License Tool webapp
- Prototype XForms implementation
- HTTP request instruction
All client-side in the browser
Some server-side XSLT processing still required
XML data end-to-end

THANK YOU FOR LISTENINGTHANK YOU FOR LISTENING

QUESTIONS?QUESTIONS?

