
Bridging XDM types in multiple
native type systems
O'Neil Delpratt, oneil@saxonica.com

Matt Patterson, matt@saxonica.com

 · XMLPrague 2024 Conference

Bridging XDM types

Bridging XDM types

Bridging XDM types
Saxonica & SaxonC

Bridging XDM types
Designing APIs that work

Bridging XDM types
Implementing those APIs

Bridging XDM types
Designing APIs that work ⬅
Implementing those APIs

Designing APIs that work

Exploring the type system gap

Exploring the type system gap

— What's ‘Primitive’?
— What's Inheritance

Exploring the type system gap

Exploring the type system gap

The sequence-likeness monster

The sequence-likeness monster

— Values (Sequences) are the ‘simplest’ type
— All Atomic Values are also 1-item sequences.

How long is a (piece of) String?

How long is a (piece of) String?

The following statements are all true in XDM:

— The length of the XDM Atomic Value representing the string "Hello
World" is 11.

— The length of the XDM Atomic Value representing the string "Hello
World" is 1.

— The length of the XDM Atomic Value representing a string containing
2^10 characters is 1.

Functionally speaking

In XPath, fn:string-length() and fn:count() make the distinction
between the sequence-likeness of a string and the stringiness of a string
clear

Similarly, map:get() is very different to the [] operator.

Numbers

Numbers (XDM)

Numbers (Javascript)

Number

Maps

Maps

Consider a simple XDM Map:

let $simples := map { "a" : "obviously" }

We can get the value of "a" with map:get()

map:get($simples, "a")

Maps

Of course, we can also call the map to get the value, because it's also an
XDM FunctionItem:

$simples("a")

And let's not forget about also being a Value:

$simples[1]("a") = "obviously"

Maps

Compare this with a Python Dictionary:

>>> simples = {"a": "obviously"}
>>> simples[1]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 1
>>> simples["a"]
'obviously'

Maps

map(xs:date, map(xs:byte, xs:string))

What do you need to be able to do in order to provide idiomatic local
language API access to XDM Maps?

map[datetime.date.today()][42]

map.get(xdm.date.today()).get(42)

map.get(xdm.date.today()).get(xdm.byte(42))

Whose idiom is it anyway?

Whose idiom is it anyway?

Competing conventions
— What do you choose when [] would make sense for indexing into a

sequence, looking up a key in a map, and slicing a string?

Whose idiom is it anyway?

Contextual ignorance
— Maybe it's okay to ignore some XDM aspects that make no sense in

the context of a different language and type system.
— Atomic Values make no sense as sequences outside of XPath, so

maybe we can just make them be non-sequence-like in our API.

Implementing those APIs

Traverse an XML Document

<doc>
 <person id='x1'>
 <firstname>joe</firstname>
 <surname>bloggs</surname>
 <telephone>+4400000</telephone>
 ...
 </person>
</doc>

XPath

//person
/doc/person[2]/firstname
/expr/../..

XML Tree structure

XDM Node Navigation via API

//C++ Code

int childCountA = node->getChildCount();

XdmNode **childrenA = node->getChildren();

XdmNode *child = childrenA[0];

XdmNode **children = child->axisNodes(EnumXdmAxis::CHILD);

int childCount = child->axisNodeCount();

for (int i = 0; i < childCount; i++) {

 const char *childStr = children[i]->toString();

 cout << "child node:" << (childStr) << endl;

 operator delete((char *)childStr);

}

for (int i = 0; i < childCount; i++) {

 delete children[i];

}

delete[] childrenA;

delete node;

Code stuff

(: XPath :)
package[@role='secondary']

// Java
for (XdmNode pack : testInput.select(
 child("package").where(
 attributeEq("role","secondary"))).asListOfNodes()
{...}

Python
packs = (pack for pack in testInput.children if (
 pack.name == 'package' and
 pack.get_attribute_value('role') == 'secondary')
)

Implementing APIs in Multi-tier systems?
SaxonC:

— built on Saxon-J (Java)
— GraalVM: Cross-compiled to native

GraalVM: JVM implementation that provides the ability to compile
Java down to native code ahead-of-time

Core languages: Java <- -> C/C++

Extensions in Python (using cython), PHP

Problems with Multi-tier systems

Multi-tier programming languages
Garbage Collection (GC) issues with created XDM objects ->
 * Java GC,
 * C++ unmanaged code
 * PHP/Python GC

Solution for the Java GC problem
keeping objects alive when still in use in C++

GraavlVM's API:

— ObjectHandle
— ObjectHandle pool

Solutions in SaxonC

PHP/Python GC problems

Examples where problems can occur

1. node_ = sp.parse_xml(xml_file_name=xmlFile)
2. output = executable.apply_templates_returning_value(xdm_value=node_)
3. executable.set_parameter("param1", node_)

What happens to node_ at this point?

Another Examples where problems can occur

1. saxonproc = PySaxonProcessor()
2. valuei = saxonproc.make_array([saxonproc.make_integer_value(i) for i in [8,9,10]])
3. executable.set_parameter("param2", values) # Undefined behaviour
....

How do we solve this problem?

Our own Memory management in C++
* XDM Object reference counting
* Caching of child nodes for XDM parent node/
* Tracking accessed XDM Items in XdmValue and XDM child nodes

Examples

node_ = sp.parse_xml(xml_file_name=xmlFile) # refCount +1
output = executable.apply_templates_returning_value(xdm_value=node_) # node_ refCount??, output refCount +1

valuei = saxonproc.make_array([saxonproc.make_integer_value(i) for i in [8,9,10]]) # int refCount +1
executable.set_parameter("param1", node_) # node_ refCount +1,
executable.set_parameter("param2", values) # value refCount +1

What is the refCount of node_ at this point?

Conclusion

Conclusion
XDM’s view of the world is different
XDM wrappers need to be a first-class
part of any API

Conclusion
Mixing managed GraalVM, unmanaged
C++, and managed host language code is
complex.

Conclusion

We still have a lot of room to improve, and we hope that this survey of
some of the higher-level challenges and lower-level engineering will be
useful to other implementers and users, as well as ourselves.

Thank you & Questions
Glienicker Brücke in the Cold War photo: David Stanley1

Glienicker Brücke now photo: Konstantin's Europe and more2

2 https://www.flickr.com/photos/konstantinseurope/34278642053. Some rights reserved, CC-NC-BY-ND-2.0

1 https://www.flickr.com/photos/davidstanleytravel/21587205403. Some rights reserved, CC-BY-2.0.

https://www.flickr.com/photos/konstantinseurope/34278642053
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://www.flickr.com/photos/davidstanleytravel/21587205403
https://creativecommons.org/licenses/by/2.0/

